
Geometric aspects of supersymmetry and quantisation of fermions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 2633

(http://iopscience.iop.org/0305-4470/16/12/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 17:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 2633-2639. Printed in Great Britain 
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Burjasot (Valencia), Spain 
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Abstract. We analyse in this paper the geometric content of some aspects of supersymmetry 
by generalising a procedure of geometric quantisation recently proposed. The method is 
entirely based on a group, the ‘quantum group’; by generalising it to a supergroup we are 
able to quantise simultaneously bosons and fermions and to exhibit the geometric origin 
of the so-called covariant derivatives. The paper is restricted to Galilean supersymmetry, 
but this is not a limitation of the procedure which applies to extended super-Poincart 
supersymmetry as well. 

1. Introduction 

Supersymmetry appeared as a fundamental step towards generalising in a non-trivial 
and finite way the PoincarC space-time symmetry (for reviews see e.g. Corwin er a1 
1975, Fayet and Ferrara 1977, Salam and Strathdee 1978, van Nieuwenhuizen 1981), 
bypassing in this way the no-go theorems which had previously prevented such an 
extension (O’Raifeartaigh 1965a, b, Coleman and Mandula 1967). It has also stimu- 
lated the analysis of classical-mechanical systems described by a set of variables which 
includes Grassmann variables (pseudomechanics) (see e.g. Casalbuoni 1976a, b, Bar- 
ducci er a1 1976, Leites 1977) with the aim of reproducing the traditional structures 
of mechanics for systems with supersymmetry. Most of the analysis of supersymmetric 
theories has been performed in the framework of Einsteinian relativity, but sometimes 
the Galilean supersymmetry has also been considered (see de Franceschi and Palumbo 
1980, Puzalowski 1978). 

We have recently proposed (Aldaya and de Azcarraga 1982a, b, Aldaya et a1 
1982) a procedure of geometric quantisation? which is entirely based on the consider- 
ation of a group, the so-called ‘quantum group’. The method, which incorporates 
many aspects of the Souriau-Kostant quantisation scheme (Souriau 1970, Kostant 
1970; also see Lichnerowicz (1980) for another approach to quantisation), starts from 
a group which is a central extension of another group G by U(1). When this is 
applied to a free ‘non-relativistic’ system, turns out to be 6(,,, the eleven-parameter 
group obtained by adding a central generator to the Galilei group. This group may 
be viewed simply as the group obtained from G by substituting [qi, pi] = tnSi I for 

t A general outline of the method and its motivation is presented in 1983 Roc. Znr. Workshop on 
Supersymmetry, ed B Milewski (to be published by World Scientific Publishing CO). 
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[qi,  pi] = 0, a process which exhibits the special role of the mass in ‘non-relativistic’ 
quantum mechanics. It has been shown (Aldaya and de Azcdrraga 1982a, b, Aldaya 
et a1 1982) that, starting from e(,), it is possible to derive the quantum evolution 
equation and to define the quantum operators for a free Galilean particle; other 
interacting systems are considered as well. In this paper we extend our quantisation 
formalism to the case of the super-Galilei group. Once the differences of including 
Grassmann variables are properly taken into account, we obtain the result that the 
Galilean superfield incorporates simultaneously the description of Bose and Fermi 
particles distinguished by the statistics (and, consequently, by the action of the spin 
operator). In the process of reducing the superfield, the role of the ‘covariant deriva- 
tives’ (see e.g. Wess 1978, Zumino 1980, Corwin et a1 1975, Fayet and Ferrara 1977, 
Salam and Strathdee 1978, van Nieuwenhuizen 1981) will be that of the polarisations 
of the geometric quantisation formalismt and its geometrical origin (as left invariant 
vector fields compatible with the action of the operators) will become apparent. 

The analysis of this paper will be entirely ‘non-relativistic’ (i.e. Galilean) but some 
comments are in order here concerning the relativistic case. The group d(,)  is a 
central extension of the Galilei group G by U(1); transforming it into a supergroup 
SX(,) will involve the addition of the Grassmann variables, the supertranslations T,, 
ija (a  = 1,2)  and a modification of the cocycleS defining the extension e(,) of G 
(Bargmann 1954) in  order to have a non-trivial extension S$(, , , )  of the super-Galilei 
group SG by U(1). However, in the case of the PoincarC group no non-trivial extension 
by U( l )  is possible. Nevertheless, it is known that the N super-Poincar6 symmetry 
allows for non-trivial extensions by central charges (Haag et a1 1978). Thus, it is 
remarkable that the U( 1)-extended N = 2 super-Poincar6 symmetry permits us to 
perform a quantisation in the Grassmann sector by the above procedure which is not 
allowed by the PoincarC group. In this way, Fermi and Bose statistics are required 
by special relativity. The extended N = 2 super-Poincar6 group determines a superfield 
which incorporates two fields satisfying the Klein-Gordon equation and another one 
which verifies the Dirac equation (Aldaya and de Azchrraga 1983). 

2. Quantisation and the super-Galilei group S%(,,,) 

The quantisation procedure mentioned above starts with the quantum Lie group 6, 
the central extension of G by U(1). On d we may define the invariant left (right) 
vector fields Z L ( d )  ( Z R ( d ) ) ;  they verify that Z L ( d )  - Z R ( d )  = @ = T e ( d )  and 
[%‘“(e), ZR(6)] = 0. Another structure canonically defined on d is the left (say) 
canonical one-form 8, which is a @-valued one-form on d defined by O ( X k ) = X k  
VX: E Z ~ ( ~ ) .  Defining a basis on @, 8 may be expressed as B = 8(i)LoX&i, in  terms 

+ Polarisations are introduced in the geometric quantisation approach to restrict the dependence of the 
wavefunctions on th,e variables of the theory. !n this way the quantum operators adopt the customary 
(irreducible) form X = i J/Jp, = -i a/ax for instance. See e.g. Souriau 
(1970). 
i The cocycle of the extension is a function 6 :  C x G + R which satisfies ((g‘, g)  +[(g’g, g”) = 
[Jg’, gg”)+[(g’, g“). 6 (g, e )  = 0 = [ ( e ,  g); these properties guarantee that the composition law of the group 
G of elements (g E G, 5~ U(1)), (g’, 5‘) (g, 6) = (g‘g. 5’1 exp i 6(g‘, g)) is a group law. 6 is also called an 
exponent. Different 6’s differing in a coboundary define the same extension (see e.g. Bargmann (1954), 
where the case of the Galilei group is discussed in detail). 

= p ,  and not X = i a/Jp + x ,  
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of ordinary (left) invariant one-forms Since d has a principal bundle structure 
6 5 6 / U (  1) i= G, the vertical component 0 of 13 is canonically defined. Then (P = 
6/%@, A = e/%@), where %@ is the characteristic module of 0, is a quantum manifold; 
indeed, (P 4 P/U( 1) S, U( 1)) is a principal bundle with A as connection one-form 
which defines on SCw = curv A) a symplectic structure. The characteristic module 
Cee plays an important role in the formalism because it incorporates, in a wide sense, 
the equations of motion which are not immediately given in the traditional formalism. 
In our approach, the equations of motion will be determined by which is included 
as a polarisation, the polarisation being defined as a subspace of ZL(6) (or its 
associated integral manifold) including and associated with a subalgebra of ZL(G). 
The wavefunctions are defined as functions 9: d + C / 9 ( z  * g') = z c * 9 ( g ' ) ;  the (pre) 
quantum operators are obtained from the right vector fields ZR(6) acting as derivations 
on the 9 ' s  and the full quantisation is obtained by imposing the polarisation conditions 
( X L * 9  = 0, where XL represent the vector fields defining the polarisation). 

The above procedure of geometric quantisation carries forward to the case when 
d is a supergroup Sx. Let us here consider the case of Galilean supersymmetry; 
for convenience we shall consider only one spatial dimension. The group law for the 
super-Galilei group g' * g = g" is given by 

B" = B'+ B A" = A '  + A + B V'  V " =  V ' +  v Q" = Q ' + Q 

where A ,  B are the space-time translations, V the velocity and qoL, i j "  the supertransla- 
tions which provide a representation space for the D1" representation (a = 1, 2) of 
the rotation Q around the space axis. To  obtain the U(1) extensioLone has to define 
a cocycle 6 : (g', g)- R; once 6 is determined, the group law for SG will be given by 

(2.2) 

(g'= (g, cl, c E U(1)): 
d" = 8' * d Et' = (g' * g, 5'6 exp i6(g', g)). 

It is not difficult to check that 

&,,,)(g', g )  = m {A' V + B ( V' V + 4 V'2) + [ i j ' y 8 y a U ( ~ ' ) ~ r / p  - i j  " 8 , ~ U ( - ~ ' ) % r / ' ~ ] ) ,  (2.3) 

where the first part is a cocycle for e(,,,), fulfils the cocycle conditions for SG(,,,,. It 
should be noted-apart from the appearance of the parameter m, to be identified 
with the mass-that the addition of a coboundary to the cocycle provides the same 
extension, but will modify the expression of the vector fields (see below) and the 
covariant derivatives. From the group law (2.1)-(2.3), and remembering the Grass- 
mann character of the supertranslations, the left and right vector fields are easily 
found with the result r, 

Z L( sm, , )) : ZR(SG(,)) : 

X k  =afaB+ V a f a A + i m V 2  

xi = a / a ~  
Xb = a/aV + mAE 

x," =a/aB 

X :  = a f a A + m V E  

X :  = a f a v + B  a / a A + m B V Z  
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x," =a/acp 

(2.4) 

~k = u(&[a/avB -miiaEI 

QLa = u + ( Q ) ; [ a / a i j , - m ~ B ~ ]  

G =is a / a t  
where E is the central generator of SX(,,,,. The vertical component of the invariant 
canonical one-form on Sx(m) is immediately obtained from 2ZL(SX,,J by imposing 
the conditions @(E) = 1, 0 (any other XL) = 0. The result is 

Q t  = a / a q a  + m f a S  

OR" =a /aqa  + m q a S  

E = it ala3 

= u ( Q ) ~ ~ D ;  

= U+(Q)pSBLB - 

0 = -mA d V - 3m V2 d B  + m f ,  dq + mq df, + (dd/id). (2 .5 )  

The explicit form of 0 depends on the election of the extension cocycle (2.3); 
nevertheless, the consequences will not depend on it (see the previous footnote). 

It is clear that (SX(,,,), 0) is not a contact manifoldt. However, we may obtain a 
contact manifold by taking the quotient over the characteristic module ker 0 n ker dO. 
Again, taking care of the odd character of the 7's it is easily found that the characteris- 
tic module is generated by the vector fields Xb,X ," .  The equations of motion 
corresponding to Xf are 

dB/dt = 1 dA/dt = V d V/dt = 0 d{/il= $m V2 dt 

dQ/dt = 0 dq/dt = df/dt  = 0; (2.6) 
their solution is, trivially, 

B = t  A = (P/m ) t  + K x V = ( P / m )  t = z exp(Sm v2t) 
Q = 'PO, 17 = T o ,  f = f o  (2.7) 

where (K,  P, 770, +o, z )  are the integration constants. In addition, the set of equations 
coming from Xk simply tells us that there is no motion in the cp variable. Substituting 
(2.7) into (2.5) we may now obtain-if desired-the contact form A = e/'%'@ 

(2.8) 

obviously dA is a symplectic form (note that it is symmetric in the Grassmann sector) 
and thus (S, dA), where S [S@?(,,,)/%:e]/E is parametrised by (K, P, qo, qo), is a graded 
symplectic manifold$. 

A = -K d P  + mfo  dqO - m dfovo + (dz/iz); 

t An exacf confact manifdd is the pair (Ce, 11) where V is a manifold of dimension 2n  + 1 and A is a 
one-form of constant class 2n  + 1, i.e. such that ker A n  ker dA = {Xl i ,A  = 0 = i, dA} = 0, i.e. has codimension 
2n  + 1. 
t Graded symplectic manifolds in the context of prequantisation were first considered by Kostant (1975, 
in particular, 05 5 and 6 ) .  Here we are not directly concerned with the problem of looking for the coadjoint 
orbits of a graded Lie group, but rather with the problem of quantisation by working directly on a 'quantum 
supergroup' which completely determines the process. 



Geometric aspects of supersymmetry 2637 

Following our formalism, the superwavefunction is a U(1)-function 9: SZ(,,,) -$ @; 
thus 9 = 9 ( t ,  x ,  p ,  cp, 7, i j ,  4') where the variables A and B have been redefined follow- 
ing (2.7). The U(1)-function condition E * Y = i 9  implies that Y = &(f ,  x ,  p ,  cp, q, i j ) l .  
We now impose the polarisation (Planck) conditions to reduce 6; we take as polarisa- 
tion the set of vector fields on S-(,,,) {Xb, Xfd, X i ,  a:}. Note that Xb will give rise 
to the evolution equation (wave equation) and that the condition ob*& = 0 is nothing 
but the condition of null 'covariant derivative' used in supersymmetry for reducing 
the superfieldst. Explicitly, 0: 6 = 0 reads 

(a&/a i ja ) - im6aBqB&=03 & = @ ( t , x , p , c p ,  q)expimija77BSaB. (2.9) 

The superfield @(t, x ,  p, cp, 77) =a(%, q )  and the exponential may be expanded in finite 
powers of q with coeficients which are arbitrary functions of x 

8 V )  = + II/" ( x  ) ( iaz )aB77 + c(x ) q B  (iaz)Ba77 a 

(2.10) 

N x ,  i j ,  77 1 = W x )  + im %(% ) i j ~  - t m  ) ( j j ~  ) ( i j ~ )  + 4" ( x  )(iuz)aev B 

(2.11) 

The polarisation condition Xi - & = O  now eliminates the x dependence in all 
coefficients a, I j l a  and C; X k  * 6 = 0 eliminates the cp dependence. Thus the fields a, 
* a  and C which appear in (2.11) depend effectively only on ( t , p ) .  To obtain the 
equations of motion which are satisfied by these fields we have to impose the last 
polarisation condition, Xb . 9 = 0. Recalling that E Y = i 9 ,  one finds that the two 
types of fields involved satisfy the Schrodinger equation and the Schrodinger-Pauli 
equation respectively: 

+imr(la(x)(i(+z)aB77B(ijq) + ~ ( ~ ) 7 7 ~ ( i a 2 ) a 8 7 7  B . 

(2.12) 

and that the final form of 

9 = W ( P )  + CL" ( p ) ( i ~ z ) ~ s ~ '  + C(P)T'  (i(+2)Ba77 "35 (exp - i(p2/2m ) t )  (exp imijq) 

is given by the expression 

=a(p, q ) ~  (exp-i(p2/2m)t)(exp imijq). (2.13) 

The quantum operators are, according to the general formalism (see Aldaya and 
de AzcPrraga 1982, Aldaya et a1 1982), the right vector fields (apart from a numerical 
factor) acting as derivations on the polarised wavefunctions. It should be noted that, 
because right and left vector fields commute, the action of the operators is compatible 
with all the restrictions (polarisations) introduced. We take 

e R 
Qa =ioa (2.14) 

t More precisely the 'covariant derivatives' (see e.g. Salam and Strathdee (1978) for the relativistic case) 
are just the D L ,  DL of (2.4). Because U(cp j Ut(cp j are regular matrices, they provide the same constraints. 
The QL; 0' are 'invariant' (commute) with the right-invariant vector fields and in particular with the 
rotations generator X:.  It should be noted that the above 'superfield' \y depends on more variables than 
the superfield of Salam and Strathdee which only depends on the superspace variables. 
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Eliminating the factor 6, one obtains 

it& = (i a/ap - tp/m )Q, (2.15) 

and eliminating the exponential we get for the Bose (i.e. 2l and C) and Fermi (4") 
fields contained in the superfield 

R W p )  = i (a/ap)Wp) & " ( P I  = i ( a / a p ~ " ( p ) .  (2.16) 

(2.15) shows that in momentum representation, 2 =i(a/ap) (we have put h =  1 
throughout). 

The operator fz simply confirms the scalar and spinorial character of a, C and 
4" respectively. Indeed, taking into account that X," {T = 0, one 
obtains that the induced action of f, on the fields contained in V is given by 

L l , f l =  0 f ,c  = 0 If,*" =;(a&*? (2.17) 

Thus, the superfield \I' contains two scalar fields and one fermion field described by 
a Pauli spinor *,"(t, p ) .  

Finally, the operators 8, and oa play the role of canonical conjugate operators, 
their actions on Q ( r ,  p ,  7 )  being given by 

8 " ~  = i(a/aqa 0, @ = 2m7 p68, Q (2.18) 

in accord with the fact that {Q:, Qp"} = 2m6,pE:. and 6 are associated, as expected, 
with the momentum and the energy. 

To conclude, we remark the crucial role played by the mass m in the definition 
of the extensions C?(,,,) and ST(,, , , .  In the case of the extended N = 2 super-Poincar6 
symmetry the mass also appears associated with a central charge+. As mentioned in 
the introduction, it has been shown elsewhere that m characterises the cocycle defining 
the extended N = 2 super-Poincar6 symmetry and that the above quantisation formal- 
ism leads to two Klein-Gordon and one Dirac equations. 

7(iu2)7 = 0, X," 
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